
Numerical methods for the Gyrokinetic (GK) Vlasov
equation

Eric Sonnendrücker
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Overview:
Discretisation of gyrokinetic (GK) Vlasov equation.

Starting point:

Start from field theoretic Lagrangian → exact conservation properties.
Start from Euler-Lagrange eqns. (Vlasov + field eqns)

Different classes of numerical methods

Lagrangian: Solve for characteristics (particle motion): PIC method
Semi-Lagrangian: Lagrangian + projection on phase space grid
Eulerian: solve Vlasov eq on phase space grid using FV or DG typically.

Content of this talk
PIC method:

Bridge the gap between PIC and Monte Carlo method. Derive PIC
from known concepts of MC methods in statistics.
Put PIC in a variational framework starting from gyrokinetic
Lagrangian (following Lewis 1970).

Introduction to different kinds of semi-Lagrangian methods
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Tokamak simulations

Large magnetic field.
Particle trajectories mostly confined along magnetic field lines.
Toroidal geometry
Tokamak is axisymmetric in the toroidal direction.
Large anisotropy of physics along and across magnetic field lines puts
strong constraints on numerical method and mesh that is used.
Need good alignment with magnetic flux surfaces and or high-order
methods.

Guido Huysmans Marseille, 28/10/2009

Isoparametric representation poloidal plane (R,Z)

polar flux surface aligned
flux surface aligned 

with X-point

• Allows accurate alignment of finite elements with equilibrium flux 
surface geometry:

– better representation of radial/angular anisotropy of MHD modes

• Grid construction on arbitrary irregular grids is an open problem

• JOREK grids:
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Approximation of Vlasov-Poisson equations in tokamak

Specificities of tokamak, in particular large magnetic field and
quasi-neutrality used to derive approximate models where smallest
space and time scales are removed.

In magnetic fusion plasmas at the time scale of micro turbulence two
small scales need to be removed for efficient simulation:

1 Rotation around magnetic field: gyrokinetic model.
2 Debye length: quasi-neutral model.
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The electrostatic gyrokinetic model

The Vlasov-Poisson gyrokinetic model reads

∂f

∂t
+

dX

dt
· ∇x f +

dV‖
dt

∂f

∂v‖
= 0,

with

B∗‖
dX

dt
= b×∇J(φ) +

1

q
(mV 2

‖∇× b + µb×∇B) + V‖B

B∗‖
dV‖
dt

= −(B +
m

q
V‖∇× b) · ( µ

m
∇B +

q

m
∇J(φ))

and B∗‖ = B + m
q V‖∇× b · b.

The gyroaverage operator J transforms the guiding center distribution
to the distribution at the particle position which allows to take into
account the finite Larmor radius effects.
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Hamiltonian formalism

Starting with Littlejohn 1983, and followed by Brizard, Hahm, Qin,
Sugama, Scott-Smirnov and many others, derivation of the
gyrokinetic theory starts from a particle phase space Lagrangian in
canonical coordinates and finds suitable change of coordinates to
decouple the gyrophase up to some given order and average it out.

Following Sugama we start from the phase space Lagrangian, splitting
between particle and field Lagrangian:

L =
∑
s

∫
fs(Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t) dZ0 +

∫
E 2 − B2

⊥
8π

dX.

Distribution function f expressed at initial time. Particle Lagrangian
Lp is of the form

Lp(q, q̇,p, t) = p · q̇ − H

where H is the particle Hamiltonian.
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Gyrokinetic Lagrangian

Gyrokinetic equations can be derived from a Lagrangian with the
same structure for the gyrocenters.

Two changes of variables in phase space: guiding center
transformation and gyrocenter transformation yield a Lagrangian in
the new phase space coordinates z ∈ R6 obtained as a coordinate
transformation of q ∈ R3 and p ∈ R3:

Lp(z, ż, t) = p · q̇ − H

where now H, p and q are functions of z, t.

Canonical hamiltonian formulation

d

dt

(
q
p

)
= J∇q,pH with J =

(
0 I3
−I3 0

)
.

This becomes in new coordinate system dz
dt = Ω∇zH,

Ω is new cosymplectic matrix whose components are Poisson brackets
of coordinates, with Poisson structure.

Eric Sonnendrücker (IPP & TUM) Numerical methods for the Gyrokinetic (GK) Vlasov equation21-25 July 2014 9 / 55



Advective form of GK Vlasov equation

The GK Vlasov equation is a scalar hyperbolic equation in phase space

Advective form
∂f

∂t
+ A · ∇f = 0

The solution of the Vlasov equation can be expressed with help of
characteristics which are the solutions of the differential system

dZ

dt
= A(t)

Characteristics are denoted by Z(t; z, s)

Solution of Vlasov equation then writes f (z, t) = f0(Z(0; z, t)).
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Conservative form of GK Vlasov equation

Arbitrary coordinates in configuration space
√
g Jacobian of

coordinate transformation.

Jacobian of 6D coordinate transformation to gyrocenter coordinates
then becomes B∗‖

√
g

Using ∇ · (B∗‖
√
gA) = 0, advective form can be transformed to

conservative form

∂f

∂t
+

1

B∗‖
√
g
∇ · (B∗‖

√
gAf ) = 0

Conservative form can be extended to include collisions → Fokker
Planck or Kolmogorov forward equation.

Eric Sonnendrücker (IPP & TUM) Numerical methods for the Gyrokinetic (GK) Vlasov equation21-25 July 2014 11 / 55



Conservation properties

Maximum principle

0 ≤ f (x, v, t) ≤ max
(x,v)

(f0(x, v)). (1)

Follows from advective form

f (x, v, t) = f0(X(0; x, v, t),V(0; x, v)).

Conservation of phase space volume

For any volume V of phase space∫
V
f (z, t)B∗‖

√
g dz =

∫
F−1(V )

f0(z̃)B∗‖
√
g dz̃. (2)
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Numerical simulation of gyrokinetic equations

Difficulties:

defined in 5D phase space
Appearance of small scales. Filamentation.
Necessity to use a mesh of configuration space adapted to magnetic
field lines to handle efficiently anisotropy of transport: curvilinear
coordinates.

Particle methods: more efficient in high dimensions.

Good qualitative results at relatively low cost
Numerical noise and slow convergence: need efficient variance
reduction techniques.

Methods using a grid of phase space:

Large grid of 5D phase space. Size reduced by field alignement.
No numerical noise, but diffusion.
Small scales at some point will not be resolved by the grid.
Need to dissipate them for stability. How?
Entropy cannot be conserved for long time simulations
Hamiltonian structure harder to preserve.
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Discretization of the Vlasov equation by a particle method

Usually seen with a purely deterministic point of view as an
approximation of a function by a sum of Dirac masses.

Particle approximation of the Vlasov equation. Distribution function
is approximated by

fh(x , v , t) =
∑
k

wkδ(x − xk(t))δ(v − vk(t)).

In standard PIC all weights are equal.

Variance reduction methods (from Monte Carlo methods in
statistics):

Weighted PIC corresponds to importance sampling.
δf corresponds to control variates.

Deterministic, pseudo-random or Monte-Carlo approximation of f0.

Once particles have been initialized, they are advanced using
deterministic equations of motion.
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Coupling particles with fields through shape functions

Particle method defines point particles (Dirac masses).

Regularization by convolution with a finite width smoothing kernel
generally called weighting function.

Splines of different orders on are generally used on structured grids

NGP CIC order 2

P1 Finite Element shape functions on unstructured grids.
Generally fields obtained by Poisson or Maxwell field solver first
interpolated at vertices of mesh
Truncated Gaussians have also been used by some authors
(Jacobs-Hesthaven).

Eric Sonnendrücker (IPP & TUM) Numerical methods for the Gyrokinetic (GK) Vlasov equation21-25 July 2014 16 / 55



Classical Poisson solvers

We need to approximate −∆φ = ρ with periodic boundary conditions.

Finite Difference method. The standard centred second order finite
difference method on a uniform grid yields the circulant system

−φj+1 + 2φj − φj−1 = ∆x2ρj , 0 ≤ j ≤ Nx − 1

to set constant assume
∑
φj = 0. Electric field computed also with

centred finite differences Ej = (φj−1 − φj+1)/(2∆x).
The FD solver verifies:

∑
Ejρj = 0.

Finite Element method with B-splines as test functions:
φh(x) =

∑
φjSj(x) verifies∫
∇φh(x)∇Si (x)dx =

∫
ρNSi (x)dx , 0 ≤ i ≤ Nx − 1.

Particle smoothing provided by Finite Element test function.
Using φh itself as a test function, the Finite Element solver verifies∫

|∇φh|2 dx =

∫
ρNφh(x) dx = −

N∑
k=1

wkφh(xk(t)).
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Momentum conserving FD-PIC

In classical PIC literature distinction between momentum conserving
and energy conserving PIC is made.

FD-PIC can be made momentum conserving by using symmetric
procedure for computing ρ at grid points from particles and
computing E at particles from grid values:

ρj =
N∑

k=1

wkS(xk − xj), E (xk) =
Nx−1∑
j=0

EjS(xk − xj).

Evolution of total momentum given by velocity advance:

N∑
k=1

wk
v
n+1/2
k − v

n−1/2
k

∆t
=

N∑
k=1

wkE (xk) =
N∑

k=1

wk

Nx−1∑
j=0

EjS(xk − xj)

=
Nx−1∑
j=0

Ej

N∑
k=1

wkS(xk − xj) =
Nx−1∑
j=0

Ejρj = 0.
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Energy conserving FE-PIC without time discretisation

Energy conserving PIC was derived by Lewis (1970) from a variational
principle. Equivalent to our FE-PIC formulation.

Automatically energy conserving without time discretisation e.g. for
Vlasov-Poisson

d

dt

(
N∑

k=1

1

2
wkv

2
k(t) +

∫
|∇φh|2 dx

)
=

N∑
k=1

wk(vk(t)·dvk
dt
−∇φh(xk(t))·dxk

dt
))

=
N∑

k=1

wk(vk(t) · ∇φh(xk(t))−∇φh(xk(t)) · vk(t))) = 0.
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Monte Carlo interpretation of the particle in cell method

Up to now the PIC method has be introduced as a deterministic
particle method.

When collisions are introduced, the natural way within the PIC
framework is to use stochastic differential equations (SDE) and the
Langevin formalism.

With collisions deterministic interpretation makes is not adequate.

Even without collisions for long enough times phase mixing occurs
and numerical fluctuations are introduced, which makes Monte Carlo
interpretation necessary.

Consequences: only expected values are well defined. Point values of
the distribution function at particle positions should not be used.
This introduces also for PIC a resolution issue.
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Monte Carlo simulation. Some background notions.

A random variable X is a mapping from a probability space to R. It is
characterised by its probability density function (PDF) f .

The realisations of X are randomly drawn according to f .

The transfer theorem links the expected value of a real function of a
random variable to a classical integral involving the PDF of X

E(g(X )) =

∫ +∞

−∞
g(x)f (x)dx .

A Monte Carlo simulation consists in approximating a number that
can be expressed as an expected value using the law of large numbers:

E(g(X )) ≈ 1

N

N∑
i=1

g(Xi )

where the Xi are independent identically distributed (iid) random
variables (distributed like X , i.e. having the same PDF as X ).
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Monte Carlo PIC

Initialisation: Particle positions in phase space are drawn randomly
according to the initial PDF f0 that is the initial condition of the
Vlasov equation (normalised to one).

There is a one to one correspondance between a random variable and
its PDF. The PDF is characterised by the particle positions in phase
space

The Kolmogorov forward equation describes the evolution of the PDF
and the associated SDE, which is exactly the equation of
characteristics (an ODE) when no diffusion term is present, describes
the evolution of the random variable associated to the PDF.

In a PIC method the time evolution is performed by solving
(numerically) the SDE (or the ODE) and the PDF f (t) can be
recovered from the particle positions using a kernel density estimate
(KDE).
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Expected values in a PIC code

In the Monte Carlo point of view, all the quantities of interest are
expressed as expected values and approximated by the law of large
numbers.

Examples:

Kinetic energy: ∫
fv2 dx dv = E(V 2).

Charge density at a point defined using smooth kernel S (cloud):

ρ(xj) =

∫
S(x − xj)f (x , v)dx dv = E(S(X − xj)).

Current density at a point:

J(xj) =

∫
S(x − xj)vf (x , v)dx dv = E(S(X − xj)V ).

Eric Sonnendrücker (IPP & TUM) Numerical methods for the Gyrokinetic (GK) Vlasov equation21-25 July 2014 23 / 55



Monte Carlo error

Common measure for the error in Monte Carlo simulation is mean
squared error (MSE)

MSE (θ̂) = E((θ̂ − θ)2) = V(θ̂) + Bias(θ̂)2.

For an unbiased simulation the error is given by the variance of the
estimator.

The variance of the sample mean for a random variable X is V(X )/N.

So the root mean square error for an approximation using the law of
large number is proportional to√

V(X )/
√
N.

This can be made precise using the central limit theorem.

From this we get the statistical convergence in 1/
√
N. We note also

that the error is smaller if the variance of the random variable being
simulated is smaller.

Eric Sonnendrücker (IPP & TUM) Numerical methods for the Gyrokinetic (GK) Vlasov equation21-25 July 2014 24 / 55



Kernel density estimate

To reconstruct a probability density function f from particle positions
we use in PIC codes a smooth kernel S that we assume to be even
and a tensor product of 1D functions for simplicity.
Even if it is in general not necessary to reconstruct f except for
diagnostic, we will always need it to reconstruct ρ
This kernel density estimate is defined by:

fh,N(x1, . . . , xd) =
1

Nhd

N∑
i=1

S

(
Y1,i − x1

h

)
. . . S

(
Yd ,i − xd

h

)
.

Its mean squared error can be computed as sum of variance and bias
squared. Note that here the bias is unavoidable

MSE (fh,N) =
R(S)d

Nhd
f +

h4

4
κ22(S)(∆f )2 + O(

1

N
) + O(h6).

We can compute N so that both terms balance which yields a MSE of

the order N−
4

4+d , which is larger than the standard statistical MSE
N−1 and depends on d . Curse of dimensionality
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Derivation of Monte Carlo PIC code from a Lagrangian

Derivation of PIC code from Lagrangian introduce by Lewis 1970.
Recent work by Evstatiev 2013 and Shadwick 2014.

Consider Lagrangian of form

L[Z , φ](t) =
∑
s

∫
fs(Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t)dZ0+

∫
|∇φ|2 dX.

First part directly translates into an expected with respect to initial
distribution of particles for which we perform a MC approximation

L[Z , φ](t) =
∑
s

N∑
k=1

Lp(Zs(Z0,k , t0; t), Żs(Z0,k , t0; t), t) +

∫
|∇φh|2 dX.

When φh is constrained to live in finite dimensional subspace,
variations with respect to φh directly yield finite element formulation
of field equation.

This formulation is implemented in ORB5 family of codes.

Eric Sonnendrücker (IPP & TUM) Numerical methods for the Gyrokinetic (GK) Vlasov equation21-25 July 2014 26 / 55



Variance reduction techniques

The Monte Carlo error for a simulation based on a random variable X
is given by

√
V(X )/N.

The idea of variance reduction techniques that are essential for
efficient Monte Carlo simulations is to find a random variable X̃ so
that

E(X̃ ) = E(X ) and V(X̃ )� V(X ).

Two such techniques are efficiently used in PIC simulations
1 Importance sampling: weighted PIC
2 Control variates: δf PIC

Both have been historically developed for other purposes. First MC
interpretation by Aydemir 1994.

Both techniques are still not mainstream in PIC simulations because
of weight mixing and weight spreading issues. We will see how those
can be mitigated.
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Importance sampling (1)

We want to compute via Monte Carlo simulation∫
ψ(z)f (z) dz = E(ψ(Z)).

Depending on ψ it might not be the best approach to use directly the
density f for drawing the random variable used in the simulation.

If g is any other probability density that does not vanish in the
support of f one can express our integral as an expectation using a
random variable Z̃ of density g :∫

ψ(z)f (z) dz =

∫
ψ(z)

f (z)

g(z)
g(z)dz = E(W (Z̃)ψ(Z̃)),

where the random variable W (Z̃) = f (Z̃)/g(Z̃) is called weight.
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Importance sampling (2)

The Monte Carlo approximation using independent random variables
distributed identically with density g can be expressed as

M̃N =
1

N

N∑
i=1

W (Z̃i )ψ(Z̃i ),

from which we get

E(M̃N) = E(W (Z̃)ψ(Z̃)) =

∫
ψ(z)f (z) dz.

M̃N is another unbiased estimator of the integral we wish to compute
and the approximation error for a given number of samples N is
determined by its variance.
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Application of importance sampling to the PIC method

Instead of initialising the particle positions according to initial particle
distribution f0, use adequately chosen marker distribution g0.

For each marker zk weight is defined by wk = f0(zk)/g0(zk).

Let marker density evolve like particle density: g is solution of the
same Fokker-Planck (or Vlasov) equation as f , only with different
initial condition.

As f and g are conserved along the same characteristics
wk is constant in time:

wk =
f (t, zk(t))

g(t, zk(t))
=

f0(zk(0))

g0(zk(0))
.

Good way to initialise marker dependent on physics problem.

Each expected value computed from g yields different variance. Low
noise for computation of ρ essential.
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Control variate method

We want to define a Monte Carlo approximation of a = E(X ) for
some given random variable X .

Assume there exists a random variable Y with known expected value
correlated to X .

For α ∈ R define a new random variable

Zα = X − α(Y − E(Y )).

For any α, E(Zα) = E(X ) = a.

The sample mean of Zα

MN,α =
1

N

N∑
i=1

(Xi − α(Yi − E(Y ))) = αE(Y ) +
1

N

N∑
i=1

(Xi − αYi )

can be used instead of the sample mean of X to approximate a.

The random variable αY is called a control variate for X .

If X and Y are not independent, there exists a value of α for which
the variance of Zα is smaller than the variance of X .
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Application of control variate in PIC

We couple control variate with importance sampling by assuming an
arbitrary marker distribution g .
Related to δf method originally introduced for linear tokamak
simulations.
Idea: f always stays close to analytically known distribution function
f̃ (t, z). Typically initial condition or equilibrium distribution.
Let Y (t) be random variable associated to f , build control variate Ỹt

associated to f̃ (t, z) such that

Yt = ψ(Z)
f (t,Z)

g(t,Z)
, Ỹt = ψ(Z)

f̃ (t,Z)

g(t,Z)
.

Indeed we have

E(Ỹt) =

∫
ψ(z)

f̃ (t, z)

g(t, z)
g(t, z) dz =

∫
ψ(z)f̃ (t, z) dz

can be computed analytically for simple enough functions ψ and f̃ .
If f̃ is close enough to f then Ỹt will be close to Yt
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Implementation of control variates in PIC (1)

Small modification in existing PIC code.

Add weights that will evolve in time and will be used for computation
of expected values: ρ, J, kinetic energy, ...

Algorithm as follows:

Initialisation:

Sample initial marker positions according to the random variable Z 0 of
density g0.
Importance weights for f defined by random variable
W = f0(Z0)/g0(Z0)
Importance weights for δf = f − αf̃ defined by the random variable

W 0
α =

f0(Z0)− αf̃ (tn,Zn)

g0(Z0)
= W − α f̃ (0,Z0)

g0(Z0)
= W − αW̃ (0).
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Implementation of control variates in PIC (2)

Time stepping
Markers advanced using characteristics of Vlasov
Because f and g satisfy the same Vlasov-Poisson equation, they are
conserved along the same characteristics so that

W =
f (tn,Zn)

g(tn,Zn)
=

f0(Z0)

g0(Z0)

W does not evolve in time.
We know f̃ analytically and know that f and g are conserved along the
characteristics, so that we can compute the importance weight for δf at
time tn from the phase space positions of the markers at the same time:

W n
α =

f (tn,Zn)− αf̃ (tn,Zn)

g(tn,Zn)
=

f0(Z0)− αf̃ (tn,Zn)

g0(Z0)
= W−α f̃ (tn,Zn)

g0(Z0)
.

W n
α is a time dependent random variable which can be computed

explicitly using the analytical functions f̃ , f0 and g0.
These values can be used to express the sample mean for the new
simulated random variable Ỹα = Y − α(Ỹ − E(Ỹ )).
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The backward semi-Lagrangian Method

f conserved along characteristics

Find the origin of the characteristics ending at
the grid points

Interpolate old value at origin of characteristics
from known grid values → High order
interpolation needed

Typical interpolation schemes.

Cubic spline (Cheng-Knorr)
Cubic Hermite with derivative transport (Nakamura-Yabe)
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Interpolation

Cubic spline interpolation originally proposed by Gagné and Shoucri
1977 is still our method of choice.

Other methods have been tried: different variants of Lagrange,
Hermite, higher order splines. None has proved superior to cubic
splines for our applications.

Features needed by interpolation: accuracy and robustness. Needs to
degrade well when distribution is not resolved on the mesh.

New implementations. Local splines

Series approximation of derivative on boundary: Crouseilles, Latu, ES:
JCP 2007.
Fast algorithm by Unser IEEE Trans on Pattern Analysis and Machine
Intelligence, vol 13 (3), 1991 for signal processing. Cholesky
decomposition with constant coefficients on diagonal and off-diagonal.
Iterations started with series using directly f .
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Computation of the origin of the characteristics

Transport equation
∂f

∂t
+ a · ∇f = 0,

Characteristics
dX

dt
= a

Computation of the origin of the characteristics :

Explicit solution if a does not depend on x and t
Else, numerical algorithm needed.
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Splitting for exact computation of characteristics

In many cases splitting can enable to solve a constant coefficient
advection at each split step. Ideal case.

E.g. separable Hamiltonian H(q,p) = U(q) + V (p).

Vlasov equation in canonical coordinates reads

∂f

∂t
+∇pH · ∇qf −∇qH · ∇pf = 0.

Split equations then become

∂f

∂t
+∇pV · ∇qf = 0,

∂f

∂t
−∇qU · ∇pf = 0,

where U does not depend on p and V does not depend on q
⇒ characteristics can be solved explicitly.
Vlasov-Poisson falls into this category with q = x, p = v,
H(x, v) = 1

2mv2 + qφ(x, t).
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Backward computation of characteristics in general case.

Consider general case. Characteristics defined by

dX

dt
= a(X, t).

Backward solution: Xn+1 is known and an known on the grid.
Does not allow standard ODE integrator.

Numerical method for EDO can be derived using a quadrature
formula on RHS of system by integrating on one time step, e.g. left
or right rectangle rule for 1st order:

Xn+1 − Xn = ∆t an(Xn) or Xn+1 − Xn = ∆t an+1(Xn+1).

No explicit solution:

Fixed point procedure needed in first case (e.g. Newton).
Predictor-corrector method on a needed in second case.
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A two step second order method

Solve characteristics defined by dX
dt = a(X, t).

Centered quadrature on two time steps:

Xn+1 − Xn−1 = 2∆t an(Xn), Xn+1 + Xn−1 = 2Xn + O(∆t2).

Use fixed point procedure to compute Xn−1 such that

Xn+1 − Xn−1 = ∆t an(
Xn+1 + Xn−1

2
).

Problem: compute f n+1 from f n−1. Even and odd order time
approximations become decoupled after some time. Artificial coupling
needs to be introduced.
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A one step predictor-corrector second order method

Solve characteristics defined by dX
dt = a(X, t).

Centered quadrature on one time step:

Xn+1 − Xn = ∆t an+
1
2 (Xn+ 1

2 ), Xn+1 + Xn = 2Xn+ 1
2 + O(∆t2).

Now an+
1
2 is unknown. But can be computed with first order scheme

(like in Runge-Kutta methods) for global second order accuracy.
Requires two updates of distribution function per time step.

Use fixed point procedure to compute Xn such that

Xn+1 − Xn = ∆t an+
1
2 (
Xn+1 + Xn

2
).

In practice use linear interpolation for evaluation of an+
1
2 (X ) to get

explicit solution for Xn.
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Conservativity

Consider abstract Vlasov equation where z are all the phase space
variables

∂f

∂t
+ a(z, t) · ∇z f = 0 with ∇ · a = 0.

The equation is conservative: d
dt

∫
f dz = 0.

Consider splitting the equations by decomposing the variables into z1
and z2. Then the split equations read

∂f

∂t
+ a1(z, t) · ∇z1f = 0, and

∂f

∂t
+ a2(z, t) · ∇z2f = 0.

We have ∇ · a = ∇z1 · a1 +∇z2 · a2 = 0, but in general ∇z1 · a1 and
∇z2 · a2 do not vanish separately.

One or more of the split equations may not be conservative.
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Problem with non conservative Vlasov solver

When non conservative splitting is used for the numerical solver, the
solver is not exactly conservative.

Does generally not matter when solution is smooth and well resolved
by the grid. The solver is still second order and yields good results.

However: Fine structures develop in non linear simulations and are at
some point locally not well resolved by the phase space grid.

In this case a non conservative solvers can exhibit a large numerical
gain or loss of particles which is totally unphysical.

Lack of robustness.

Classical SL solver can be made conservative at first order by
appropriate coupling with field solver.
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Vortex in Kelvin-Helmholtz instability

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  200  400  600  800  1000

’diagt1kh2.plot’ u 1:3
’diagt16kh2.plot’ u 1:3
’diagt17kh2.plot’ u 1:3

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  200  400  600  800  1000

’diagt1kh2.plot’ u 1:4
’diagt16kh2.plot’ u 1:4
’diagt17kh2.plot’ u 1:4
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Conservative semi-Lagrangian method

Start from conservative form of Vlasov equation

∂f

∂t
+∇ · (f a) = 0.∫

V f dx dv conserved along characteristics

Three steps:

High order polynomial reconstruction.
Compute origin of cells
Project (integrate) on transported cell.

Efficient with splitting in 1D conservative equations as cells are then
defined by their 2 endpoints. A lot more complex for 2D (or more)
transport.

Splitting on conservative form: always conservative.
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Link between classical and conservative semi-Lagrangian
methods

For constant coefficient advections it can be shown that

C-Lag(2d) ⇐⇒ SL-Lag(2d+1)
PSM ⇐⇒ SPL

Consequences :
1 Classical and conservative semi-Lagrangian methods equivalent for

constant coefficients split equations.
2 The PFC method (Filbet-ES-Bertrand, JCP 2001) corresponds for the

Vlasov-Poisson (or Vlasov-Maxwell) systems to a classical
semi-Lagrangian method with cubic Lagrange interpolation.
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The forward semi-Lagrangian method

f conserved along characteristics

Characteristics advanced with same time
schemes as in PIC method.

Leap-Frog Vlasov-Poisson

Runge-Kutta for guiding-center or gyrokinetic

Values of f deposited on grid of phase space using convolution kernel.

Identical to PIC deposition scheme but in whole phase space instead
of configuration space only.

Similar to PIC method with reconstruction introduced by Denavit
(JCP 1972).
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The δf semi-Lagragian method for Vlasov-Poisson

To mitigate round-off and boundary errors, it can be useful to
explicitely remove a known background distribution function from the
actually computed function: f = f 0 + δf . E.g. f 0(v) = 1√

2π
e−v

2/2 .

Semi-Lagrangian with splitting.

x-advection unchanged as f 0 does not depend on x and t.

v-advection: f = f 0 + δf conserved along characteristics:

δf n+1(v) = δf n(V(tn; v, tn+1)) + f 0(V(tn; v, tn+1))− f 0(v).

with V(tn; v, tn+1) = v − E∆t.
As f 0 explicitly known, only δf is interpolated.

Poisson: −∆δφ =
∫
δf (t, x, v) dv.
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Mapped mesh

A mapped mesh is defined by a mapping e.g. F : R2 → R2 from a
structured uniform logical mesh parametrized by (ξ1, ξ2) to the
physical domain in cartesian coordinates

x1 = F1(ξ1, ξ2), x2 = F2(ξ1, ξ2).

Mapping can be analytical coordinate
transformation or defined by spline or
NURBS curves.

Q

F

Patch 
Physical Domain

K

Using a given non cartesian coordinate system is one form of a
mapped mesh.
Can be more general. Full mapping not needed, only grid points and
Jacobian matrix.
Block structured mesh with one mapping in each block.
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Vlasov equation in curvilinear coordinates

Denote by Ai the contravariant (curvilinear) coordinates
Ai = A · ∇xξi , with A velocity vector in cartesian coordinates.

Advective form of Vlasov equation

∂f

∂t
+
∑
k

Ak ∂f

∂ξk
= 0.

Conservative form of Vlasov equation

√
g
∂f

∂t
+
∑
k

∂

∂ξk

(√
g f Ak

)
= 0,

with the jacobian matrix
√
g = det

(
D(x1, x2)

D(ξ1, ξ2)

)
.
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Specific problems on non cartesian meshes

Two major issues when working on curvilinear meshes:
1 Conservativity
2 Free stream preservation (preservation of constant states).

Classical SL scheme preserves constant states but is not conservative.

Conservative SL scheme is conservative but does not preserve
constant states.

We like to do dimensional splitting to reduce the problem to a set of
1D problems for numerical efficiency. Not to be compatible with both
exact conservation properties

In practice both BSL and CSL work well, with conservation properties
not enforced exactly but to lowest order in ∆t.

This is obtained by making sure that the advection field is exactly
divergence free at the discrete level.
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Problem with non free stream preservation

Drift-kinetic simulation

Advection field computed with cubic splines (left) and with one that
satisfies the discrete divergence free condition (right).
4D simulation of 128x128x64x32 cells, result at time t = 60.
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Selalib library

Project started in December 2010 in France at Inria and university of
Strasbourg.

Main developers: E. Chacon-Golcher, P. Navaro, A. Back, M.
Mehrenberger, ES and many others mainly in Strasbourg for now.

Object oriented Fortran 2003.

Aim: Develop a library to be used in physics codes for solving kinetic
(including gyrokinetic) equations.

Make parallel implementation transparent for the user.

Curvilinear mesh by patches.

Large panel of interpolation methods: Lagrange arbitrary order, spline
arbitrary order, trigonometric, WENO

Finite Element solvers on mapped meshes.

Specific methods optimized, including accelerators (Cuda, OpenCL)
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Conclusions

Lagrangian (PIC), semi-Lagrangian (Lagrange + projection) and
eulerian approaches have all been implemented to simulate GK Vlasov
equations.

Pros and cons for each method.

PIC methods can be formulated in pure Monte Carlo formalism with
the advantage of giving clear access to huge literature in this domain.

PIC methods can be based on exact finite dimensional Lagrangian.
Exact conservation properties in continuous time.

Semi-Lagrangian method still uses characteristics and can be based
on same Lagrangian, however projection step impedes conservation
properties.
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